## DEMOSTRACIÓN: CUÁL ES LA MEJOR FÓRMULA PARA ESTIMAR EL COSTO AL FINAL DE OBRA CON EL VALOR GANADO

En el presente artículo, vamos a demostrar cuál es la mejor fórmula para estimar el costo al que se llegará final de la obra, empleando la metodología del Valor Ganado.

Indagado sobre artículos que tratan sobre gestión de proyectos con el Valor Ganado, encontré 4 fórmulas de cálculo, las cuales se han explicado en el vídeo PROYECCIÓN DEL COSTO AL FINAL DE LA OBRA CON LA METODOLOGÍA DEL VALOR GANADO.



## 1.1 FÓRMULAS

#### PRIMERA FÓRMULA

Es empleada cuando se estima que en el futuro, no habrá variaciones significativas del ritmo de la obra, y no existe mucha diferencia, entre el valor ganado **EV**, y el costo real de la obra **AC**, esto es: CPI = EV / AC ≈ 1

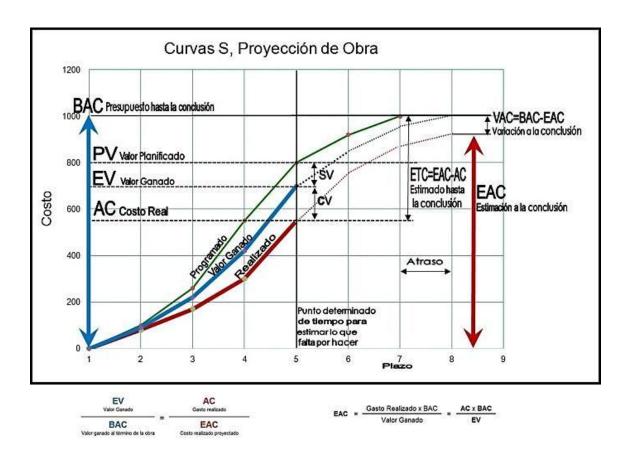
Por lo tanto, el **EAC** (Estimación a la conclusión), será igual al **AC** (Costo real) más el **BAC** (presupuesto hasta la conclusión) menos el **EV** (Valor ganado).

EAC = AC + (BAC - EV)

#### **SEGUNDA FÓRMULA**

Es similar a la primera fórmula, la cual incluye el índice de rendimiento de costo **CPI**, por lo que esta forma considera que las variaciones de costos se reflejarán en el comportamiento futuro del ritmo de la obra.

$$EAC = AC + (BAC-EV) / CPI$$


#### TERCERA FÓRMULA

Esta tercera fórmula considera el índice de rendimiento de costo **CPI**, y el índice de rendimiento de plazo **SPI**.

$$EAC = AC + \frac{(BAC - EV) \times SPI}{CPI}$$

#### **CUARTA FÓRMULA**

Es la más empleada, y se obtiene en función a las curvas S, de acuerdo a lo avanzado a la fecha, donde es posible efectuar una proyección del costo total al final de la obra, asumiendo que la obra se seguirá ejecutando con el ritmo actual.



Este método aplica una simple regla de tres.

En el presente caso, mediante las valorizaciones al 5to mes, se tiene el **EV** (Valor ganado), y se sabe que a la culminación de la obra las valorizaciones deberán tener relación directa con el **BAC** (Presupuesto hasta la conclusión). Por otro lado conocemos lo gastado realmente en la obra que es el valor **AC** (Costo real), el cual tendrá relación directa al costo proyectado que deseamos conocer o estimar al final de la obra **EAC** (Estimación a la Conclusión).

Por lo tanto aplicando una regla de tres tenemos, que el **EV** (Valor Ganado) es al **BAC** (Presupuesto a la Conclusión), como el **AC** (Gasto realizado) es al **EAC** (Estimación a la Conclusión)

Donde el **EAC** (Costo Realizado Proyectado), será:

$$EAC = \frac{Gasto Realizado x BAC}{Valor Ganado} = \frac{AC x BAC}{EV}$$

#### FÓRMULA 2 IGUAL A LA FÓRMULA 4

De estas 4 fórmulas la 2da fórmula es exactamente igual a la 4ta fórmula.

Si en la 2da fórmula de cálculo EAC = AC + (BAC-EV) / CPI, reemplazamos el índice de costo CPI = EV/AC (valor ganado/costo real), tenemos la 4ta fórmula de cálculo.

EAC = AC + 
$$\frac{BAC - EV}{CPI}$$

EAC = AC +  $\frac{BAC - EV}{EV/AC}$  = AC +  $\frac{AC (BAC - EV)}{EV}$  = AC +  $\frac{AC \times BAC}{EV}$  =  $\frac{EV}{EV}$ 

Por lo tanto se tienen solo 3 fórmulas, con las cuales se va a efectuar la demostración, para determinar cuál es la mejor fórmula.

| FÓRMULA 1           | FÓRMULA 2                        | FÓRMULA 3      |
|---------------------|----------------------------------|----------------|
| EAC = AC + (BAC-EV) | $EAC = \frac{AC \times BAC}{EV}$ | EAC = AC + CPI |

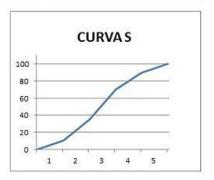
## 1.2 ESCENARIOS PARA EL ANÁLISIS

Existen 13 escenarios, que comparan el presupuesto programado, el valor ganado de las valorizaciones y lo gastado realmente en la obra, tal como se muestra en el siguiente cuadro.

En base a estos 13 escenarios, se efectuará el análisis para determinar cuál de estas fórmulas cumple con la mayor cantidad de estos posibles escenarios.

Se está considerando en todos los escenarios un presupuesto de 1,000, el cuál se ha ordenado de menor a mayor en función al valor ganado y el gasto realizado.

| SO            | PRESUPUESTO              | VALOR                | GASTO                   | INDICES DE                   | EFICIENCIA            |               |            |  |  |
|---------------|--------------------------|----------------------|-------------------------|------------------------------|-----------------------|---------------|------------|--|--|
| ESCENARIOS    | PROGRAMADO<br>PV<br>BCWS | GANADO<br>EV<br>BCWP | REALIZADO<br>AC<br>ACWP | PLAZO<br>EV/PV<br><b>SPI</b> | costo<br>ev/ac<br>CPI | OBSERVACIONES |            |  |  |
| 1             | 1,000                    | 900                  | 800                     | 0.90                         | 1.13                  | Atraso        | Buen costo |  |  |
|               | 1,000                    | 800                  | 900                     | 0.80                         | 0.89                  | Atraso        | Sobrecosto |  |  |
| 2             | 1,000                    | 900                  | 900                     | 0.90                         | 1.00                  | Atraso        | Programado |  |  |
|               | 1,000                    | 1,000                | 900                     | 1.00                         | 1.11                  | Programado    | Buen costo |  |  |
| <b>4</b><br>5 | 1,000                    | 1,100                | 900                     | 1.10                         | 1.22                  | Adelanto      | Buen costo |  |  |
| 6             | 1,000                    | 900                  | 1,000                   | 0.90                         | 0.90                  | Atraso        | Sobrecosto |  |  |
| 7             | 1,000                    | 1,000                | 1,000                   | 1.00                         | 1.00                  | Programado    | Programado |  |  |
| 8             | 1,000                    | 1,100                | 1,000                   | 1.10                         | 1.10                  | Adelanto      | Buen costo |  |  |
| 9             | 1,000                    | 900                  | 1,100                   | 0.90                         | 0.82                  | Atraso        | Sobrecosto |  |  |
| 10            | 1,000                    | 1,000                | 1,100                   | 1.00                         | 0.91                  | Programado    | Sobrecosto |  |  |
| 11            | 1,000                    | 1,100                | 1,100                   | 1.10                         | 1.00                  | Adelanto      | Programado |  |  |
| 12            | 1,000                    | 1,200                | 1,100                   | 1.20                         | 1.09                  | Adelanto      | Buen costo |  |  |
| 13            | 1,000                    | 1,100                | 1,200                   | 1.10                         | 0.92                  | Adelanto      | Sobrecosto |  |  |


Aquí en el índice de plazo SPI, valores menores que 1 indican un atraso y valores mayores que 1 indican un adelanto, en cuanto al índice de costo CPI, valores menores que 1 indican un sobrecosto y valores mayores que 1 indican que se tiene buen costo.

Se podrá pensar que los valores del valor ganado no son correctos, debido a que al final de la obra estos valores deberán ser iguales al presupuesto programado, pero en realidad durante la ejecución de un proyecto, antes de la última valorización existe un adelanto o retraso de la obra, como también una ganancia o sobrecosto, y nuestro análisis para una obra de 5 meses de duración, solo se efectuará hasta el 4to mes, esto es hasta la 4ta valorización.

Vamos a suponer que para el plazo de ejecución de 5 meses y los avances mensuales son 10%, 25%, 35%, 20% y 10%.

En base a estos avances mensuales, se tiene los avances acumulados que nos generarán las Curva S.

|                     |    | M  | ESES |    |     |       |
|---------------------|----|----|------|----|-----|-------|
|                     | 1  | 2  | 3    | 4  | 5   | TOTAL |
| AVANCES MENSUALES % | 10 | 25 | 35   | 20 | 10  | 100   |
| AVANCES ACUMULADOS  | 10 | 35 | 70   | 90 | 100 |       |



La metodología para determinar cuál es la mejor fórmula, será aplicar estos porcentajes de avances mensuales a cada uno de los escenarios para las 3 fórmulas.

## 1.3 PROYECCIÓN COSTO FINAL: FÓRMULA 1

| ARIC   | PRESUPUESTO<br>PROGRAMADO |       | GANADO | GASTO<br>REALIZADO | PV    |     |     |       |     |     | EV          |       |       |     |     |     | AC    |       |                     |       |       | PROYECIÓN COSTO FINAL<br>FÓRMULA 1 |  |  |  |
|--------|---------------------------|-------|--------|--------------------|-------|-----|-----|-------|-----|-----|-------------|-------|-------|-----|-----|-----|-------|-------|---------------------|-------|-------|------------------------------------|--|--|--|
| ESCEN, | PV                        | EV    | AC     |                    | MESES |     |     |       |     |     | MESES MESES |       |       |     |     |     |       |       | Con valores del mes |       |       |                                    |  |  |  |
| ES     | BCWS                      | BCWP  | ACWP   | 1                  | 2     | 3   | 4   | 5     | 1   | 2   | 3           | 4     | 5     | 1   | 2   | 3   | 4     | 5     | 1                   | 2     | 3     | 4                                  |  |  |  |
| 1      | 1,000                     | 900   | 800    | 100                | 350   | 700 | 900 | 1,000 | 90  | 315 | 630         | 810   | 900   | 80  | 280 | 560 | 720   | 800   | 990                 | 965   | 930   | 910                                |  |  |  |
| 2      | 1,000                     | 800   | 900    | 100                | 350   | 700 | 900 | 1,000 | 80  | 280 | 560         | 720   | 800   | 90  | 315 | 630 | 810   | 900   | 1,010               | 1,035 | 1,070 | 1,090                              |  |  |  |
| 3      | 1,000                     | 900   | 900    | 100                | 350   | 700 | 900 | 1,000 | 90  | 315 | 630         | 810   | 900   | 90  | 315 | 630 | 810   | 900   | 1,000               | 1,000 | 1,000 | 1,000                              |  |  |  |
| 4      | 1,000                     | 1,000 | 900    | 100                | 350   | 700 | 900 | 1,000 | 100 | 350 | 700         | 900   | 1,000 | 90  | 315 | 630 | 810   | 900   | 990                 | 965   | 930   | 910                                |  |  |  |
| 5      | 1,000                     | 1,100 | 900    | 100                | 350   | 700 | 900 | 1,000 | 110 | 385 | 770         | 990   | 1,100 | 90  | 315 | 630 | 810   | 900   | 980                 | 930   | 860   | 820                                |  |  |  |
| 6      | 1,000                     | 900   | 1,000  | 100                | 350   | 700 | 900 | 1,000 | 90  | 315 | 630         | 810   | 900   | 100 | 350 | 700 | 900   | 1,000 | 1,010               | 1,035 | 1,070 | 1,090                              |  |  |  |
| 7      | 1,000                     | 1,000 | 1,000  | 100                | 350   | 700 | 900 | 1,000 | 100 | 350 | 700         | 900   | 1,000 | 100 | 350 | 700 | 900   | 1,000 | 1,000               | 1,000 | 1,000 | 1,000                              |  |  |  |
| 8      | 1,000                     | 1,100 | 1,000  | 100                | 350   | 700 | 900 | 1,000 | 110 | 385 | 770         | 990   | 1,100 | 100 | 350 | 700 | 900   | 1,000 | 990                 | 965   | 930   | 910                                |  |  |  |
| 9      | 1,000                     | 900   | 1,100  | 100                | 350   | 700 | 900 | 1,000 | 90  | 315 | 630         | 810   | 900   | 110 | 385 | 770 | 990   | 1,100 | 1,020               | 1,070 | 1,140 | 1,180                              |  |  |  |
| 10     | 1,000                     | 1,000 | 1,100  | 100                | 350   | 700 | 900 | 1,000 | 100 | 350 | 700         | 900   | 1,000 | 110 | 385 | 770 | 990   | 1,100 | 1,010               | 1,035 | 1,070 | 1,090                              |  |  |  |
| 11     | 1,000                     | 1,100 | 1,100  | 100                | 350   | 700 | 900 | 1,000 | 110 | 385 | 770         | 990   | 1,100 | 110 | 385 | 770 | 990   | 1,100 | 1,000               | 1,000 | 1,000 | 1,000                              |  |  |  |
| 12     | 1,000                     | 1,200 | 1,100  | 100                | 350   | 700 | 900 | 1,000 | 120 | 420 | 840         | 1,080 | 1,200 | 110 | 385 | 770 | 990   | 1,100 | 990                 | 965   | 930   | 910                                |  |  |  |
| 13     | 1,000                     | 1,100 | 1,200  | 100                | 350   | 700 | 900 | 1,000 | 110 | 385 | 770         | 990   | 1,100 | 120 | 420 | 840 | 1,080 | 1,200 | 1,010               | 1,035 | 1,070 | 1,090                              |  |  |  |

En este cuadro para los 13 escenarios, se tienen los valores del presupuesto programado, el valor ganado y el gasto realizado.

De acuerdo al porcentaje de avance mensual de 10%, 25%, 35%, 20% y 10%, se han colocado los avances acumulados, en el presupuesto programado **PV**, en el valor ganado **EV**, y en el gasto realizado **AC**, los que originarán sus respectivas Curvas S.

Aplicando la fórmula 1, se tienen las proyecciones del costo final, esto es con los valores obtenidos en el primer mes se obtiene la primera proyección del costo final, cuando se efectúe la 2da valorización se obtendrá la segunda proyección del costo final, y así sucesivamente hasta la ejecución del 4to mes, que dará la 4ta proyección de costo final.

Aquí se observa cómo va variando la proyección del costo final mes a mes para los 13 escenarios en estudio.

## 1.4 PROYECCIÓN COSTO FINAL: FÓRMULA 2

| ARIOS | PROGRAMADO GAN | VALOR<br>GANADO<br><b>EV</b> | GANADO | GANADO | GASTO<br>REALIZADO |       |     | PV    |       |           |     |       | EV    |     |     |       |       | AC    |                     |       | PRO   | YECIÓN C<br>FÓRM | OSTO FII | VAL |
|-------|----------------|------------------------------|--------|--------|--------------------|-------|-----|-------|-------|-----------|-----|-------|-------|-----|-----|-------|-------|-------|---------------------|-------|-------|------------------|----------|-----|
| SCEN  | PV             | EV                           | AC     |        | 1                  | MESES |     |       | MESES |           |     |       |       |     |     | MESES |       |       | Con valores del mes |       |       |                  |          |     |
| ES    | BCWS           | BCWP                         | ACWP   | 1      | 2                  | 3     | 4   | 5     | 1     | 1 2 3 4 5 |     |       |       |     | 2   | 3     | 4     | 5     | 1                   | 2     | 3     | 4                |          |     |
| 1     | 1,000          | 900                          | 800    | 100    | 350                | 700   | 900 | 1,000 | 90    | 315       | 630 | 810   | 900   | 80  | 280 | 560   | 720   | 800   | 889                 | 889   | 889   | 889              |          |     |
| 2     | 1,000          | 800                          | 900    | 100    | 350                | 700   | 900 | 1,000 | 80    | 280       | 560 | 720   | 800   | 90  | 315 | 630   | 810   | 900   | 1,125               | 1,125 | 1,125 | 1,125            |          |     |
| 3     | 1,000          | 900                          | 900    | 100    | 350                | 700   | 900 | 1,000 | 90    | 315       | 630 | 810   | 900   | 90  | 315 | 630   | 810   | 900   | 1,000               | 1,000 | 1,000 | 1,000            |          |     |
| 4     | 1,000          | 1,000                        | 900    | 100    | 350                | 700   | 900 | 1,000 | 100   | 350       | 700 | 900   | 1,000 | 90  | 315 | 630   | 810   | 900   | 900                 | 900   | 900   | 900              |          |     |
| 5     | 1,000          | 1,100                        | 900    | 100    | 350                | 700   | 900 | 1,000 | 110   | 385       | 770 | 990   | 1,100 | 90  | 315 | 630   | 810   | 900   | 818                 | 818   | 818   | 818              |          |     |
| 6     | 1,000          | 900                          | 1,000  | 100    | 350                | 700   | 900 | 1,000 | 90    | 315       | 630 | 810   | 900   | 100 | 350 | 700   | 900   | 1,000 | 1,111               | 1,111 | 1,111 | 1,111            |          |     |
| 7     | 1,000          | 1,000                        | 1,000  | 100    | 350                | 700   | 900 | 1,000 | 100   | 350       | 700 | 900   | 1,000 | 100 | 350 | 700   | 900   | 1,000 | 1,000               | 1,000 | 1,000 | 1,000            |          |     |
| 8     | 1,000          | 1,100                        | 1,000  | 100    | 350                | 700   | 900 | 1,000 | 110   | 385       | 770 | 990   | 1,100 | 100 | 350 | 700   | 900   | 1,000 | 909                 | 909   | 909   | 909              |          |     |
| 9     | 1,000          | 900                          | 1,100  | 100    | 350                | 700   | 900 | 1,000 | 90    | 315       | 630 | 810   | 900   | 110 | 385 | 770   | 990   | 1,100 | 1,222               | 1,222 | 1,222 | 1,222            |          |     |
| 10    | 1,000          | 1,000                        | 1,100  | 100    | 350                | 700   | 900 | 1,000 | 100   | 350       | 700 | 900   | 1,000 | 110 | 385 | 770   | 990   | 1,100 | 1,100               | 1,100 | 1,100 | 1,100            |          |     |
| 11    | 1,000          | 1,100                        | 1,100  | 100    | 350                | 700   | 900 | 1,000 | 110   | 385       | 770 | 990   | 1,100 | 110 | 385 | 770   | 990   | 1,100 | 1,000               | 1,000 | 1,000 | 1,000            |          |     |
| 12    | 1,000          | 1,200                        | 1,100  | 100    | 350                | 700   | 900 | 1,000 | 120   | 420       | 840 | 1,080 | 1,200 | 110 | 385 | 770   | 990   | 1,100 | 917                 | 917   | 917   | 917              |          |     |
| 13    | 1,000          | 1,100                        | 1,200  | 100    | 350                | 700   | 900 | 1,000 | 110   | 385       | 770 | 990   | 1,100 | 120 | 420 | 840   | 1,080 | 1,200 | 1,091               | 1,091 | 1,091 | 1,091            |          |     |

Efectuando el mismo procedimiento para la fórmula 2, se obtienen también las diferentes proyecciones del costo final de obra por cada valorización y por cada escenario.

Con esta fórmula se observa que las proyecciones del costo final son exactamente iguales para cada escenario.

Esto se debe a que los valores **AC** (costo real) y **EV** (valor ganado) varían en la misma proporción mes a mes.

### 1.5 PROYECCIÓN COSTO FINAL: FÓRMULA 3

| ESENARIOS | PRESUPUESTO<br>PROGRAMADO | VALOR<br>GANADO | GASTO<br>REALIZADO | PV  |     |     |     |       | EV    |     |     |       |       | AC  |     |       |       |       | SPI            | СРІ            | PROYECIÓN COSTO FINAL<br>FÓRMULA 3 |          |               |       |
|-----------|---------------------------|-----------------|--------------------|-----|-----|-----|-----|-------|-------|-----|-----|-------|-------|-----|-----|-------|-------|-------|----------------|----------------|------------------------------------|----------|---------------|-------|
| I II      | PV                        | PV EV AC MESES  |                    |     |     |     |     | 2     | MESES |     |     |       |       |     | - 1 | MESES | ESES  |       |                | EV/AC          | Cor                                | n valore | lores del mes |       |
| Ж         | BCWS                      | BCWP            | ACWP               | 1   | 2   | 3   | 4   | 5     | 1     | 2   | 3   | 4     | 5     | 1   | 2   | 3     | 4     | 5     | A12.7075081006 | CONTRIBUTE PER | 1                                  | 2        | 3             | 4     |
| 1         | 1,000                     | 900             | 800                | 100 | 350 | 700 | 900 | 1,000 | 90    | 315 | 630 | 810   | 900   | 80  | 280 | 560   | 720   | 800   | 0.90           | 1.13           | 808                                | 828      | 856           | 872   |
| 2         | 1,000                     | 800             | 900                | 100 | 350 | 700 | 900 | 1,000 | 80    | 280 | 560 | 720   | 800   | 90  | 315 | 630   | 810   | 900   | 0.80           | 0.89           | 918                                | 963      | 1,026         | 1,062 |
| 3         | 1,000                     | 900             | 900                | 100 | 350 | 700 | 900 | 1,000 | 90    | 315 | 630 | 810   | 900   | 90  | 315 | 630   | 810   | 900   | 0.90           | 1.00           | 909                                | 932      | 963           | 981   |
| 4         | 1,000                     | 1,000           | 900                | 100 | 350 | 700 | 900 | 1,000 | 100   | 350 | 700 | 900   | 1,000 | 90  | 315 | 630   | 810   | 900   | 1.00           | 1.11           | 900                                | 900      | 900           | 900   |
| 5         | 1,000                     | 1,100           | 900                | 100 | 350 | 700 | 900 | 1,000 | 110   | 385 | 770 | 990   | 1,100 | 90  | 315 | 630   | 810   | 900   | 1.10           | 1.22           | 891                                | 869      | 837           | 819   |
| 6         | 1,000                     | 900             | 1,000              | 100 | 350 | 700 | 900 | 1,000 | 90    | 315 | 630 | 810   | 900   | 100 | 350 | 700   | 900   | 1,000 | 0.90           | 0.90           | 1,010                              | 1,035    | 1,070         | 1,090 |
| 7         | 1,000                     | 1,000           | 1,000              | 100 | 350 | 700 | 900 | 1,000 | 100   | 350 | 700 | 900   | 1,000 | 100 | 350 | 700   | 900   | 1,000 | 1.00           | 1.00           | 1,000                              | 1,000    | 1,000         | 1,000 |
| 8         | 1,000                     | 1,100           | 1,000              | 100 | 350 | 700 | 900 | 1,000 | 110   | 385 | 770 | 990   | 1,100 | 100 | 350 | 700   | 900   | 1,000 | 1.10           | 1.10           | 990                                | 965      | 930           | 910   |
| 9         | 1,000                     | 900             | 1,100              | 100 | 350 | 700 | 900 | 1,000 | 90    | 315 | 630 | 810   | 900   | 110 | 385 | 770   | 990   | 1,100 | 0.90           | 0.82           | 1,111                              | 1,139    | 1,177         | 1,199 |
| 10        | 1,000                     | 1,000           | 1,100              | 100 | 350 | 700 | 900 | 1,000 | 100   | 350 | 700 | 900   | 1,000 | 110 | 385 | 770   | 990   | 1,100 | 1.00           | 0.91           | 1,100                              | 1,100    | 1,100         | 1,100 |
| 11        | 1,000                     | 1,100           | 1,100              | 100 | 350 | 700 | 900 | 1,000 | 110   | 385 | 770 | 990   | 1,100 | 110 | 385 | 770   | 990   | 1,100 | 1.10           | 1.00           | 1,089                              | 1,062    | 1,023         | 1,001 |
| 12        | 1,000                     | 1,200           | 1,100              | 100 | 350 | 700 | 900 | 1,000 | 120   | 420 | 840 | 1,080 | 1,200 | 110 | 385 | 770   | 990   | 1,100 | 1.20           | 1.09           | 1,078                              | 1,023    | 946           | 902   |
| 13        | 1,000                     | 1,100           | 1,200              | 100 | 350 | 700 | 900 | 1,000 | 110   | 385 | 770 | 990   | 1,100 | 120 | 420 | 840   | 1,080 | 1,200 | 1.10           | 0.92           | 1,188                              | 1,158    | 1,116         | 1,092 |

Efectuando el mismo procedimiento para la fórmula 3, se obtienen las proyecciones del costo final de obra por cada valorización y por cada escenario.

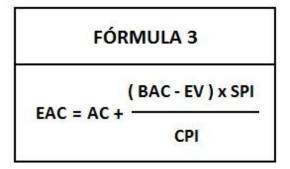
Aquí se han incluido los índices de plazo SPI y los índices de costo CPI.

## 1.6 CUADRO COMPARATIVO DE LAS PROYECCIONES CON LAS 3 FÓRMULAS

Se van a comparar las tres fórmulas para determinar cuál es la más adecuada en todos los escenarios.

| ESCENARIOS | PRESUPUESTO<br>PROGRAMADO | VALOR<br>GANADO | GASTO<br>REALIZADO | PROYEC | CIÓN CON | MES 1 | PROYEC | CIÓN CON | MES 2 | PROYEC | YECCIÓN CON MES 3 PROYECCIÓN CON MES 4 |       |          |       |      |  |
|------------|---------------------------|-----------------|--------------------|--------|----------|-------|--------|----------|-------|--------|----------------------------------------|-------|----------|-------|------|--|
| EN.        | PV                        | EV<br>BCWP      | AC                 | FÓ     | RMULAS   | 5     | FÓ     | RMULAS   | 5     | FĆ     | RMULA                                  | s     | FÓRMULAS |       |      |  |
| ES         | BCWS                      |                 | ACWP               | 1      | 2        | 3     | 1      | 2        | 3     | 1      | 2                                      | 3     | 1        | 2     | 3    |  |
| 1          | 1000                      | 900             | 800                | 990    | 889      | 808   | 965    | 889      | 828   | 930    | 889                                    | 856   | 910      | 889   | 87   |  |
| 2          | 1000                      | 800             | 900                | 1,010  | 1,125    | 918   | 1,035  | 1,125    | 963   | 1,070  | 1,125                                  | 1,026 | 1,090    | 1,125 | 1,06 |  |
| 3          | 1000                      | 900             | 900                | 1,000  | 1,000    | 909   | 1,000  | 1,000    | 932   | 1,000  | 1,000                                  | 963   | 1,000    | 1,000 | 98   |  |
| 4          | 1000                      | 1000            | 900                | 990    | 900      | 900   | 965    | 900      | 900   | 930    | 900                                    | 900   | 910      | 900   | 90   |  |
| 5          | 1000                      | 1100            | 900                | 980    | 818      | 891   | 930    | 818      | 869   | 860    | 818                                    | 837   | 820      | 818   | 81   |  |
| 6          | 1000                      | 900             | 1000               | 1,010  | 1,111    | 1,010 | 1,035  | 1,111    | 1,035 | 1,070  | 1,111                                  | 1,070 | 1,090    | 1,111 | 1,09 |  |
| 7          | 1000                      | 1000            | 1000               | 1,000  | 1,000    | 1,000 | 1,000  | 1,000    | 1,000 | 1,000  | 1,000                                  | 1,000 | 1,000    | 1,000 | 1,00 |  |
| 8          | 1000                      | 1100            | 1000               | 990    | 909      | 990   | 965    | 909      | 965   | 930    | 909                                    | 930   | 910      | 909   | 91   |  |
| 9          | 1000                      | 900             | 1100               | 1,020  | 1,222    | 1,111 | 1,070  | 1,222    | 1,139 | 1,140  | 1,222                                  | 1,177 | 1,180    | 1,222 | 1,19 |  |
| 10         | 1000                      | 1000            | 1100               | 1,010  | 1,100    | 1,100 | 1,035  | 1,100    | 1,100 | 1,070  | 1,100                                  | 1,100 | 1,090    | 1,100 | 1,10 |  |
| 11         | 1000                      | 1100            | 1100               | 1,000  | 1,000    | 1,089 | 1,000  | 1,000    | 1,062 | 1,000  | 1,000                                  | 1,023 | 1,000    | 1,000 | 1,00 |  |
| 12         | 1000                      | 1200            | 1100               | 990    | 917      | 1,078 | 965    | 917      | 1,023 | 930    | 917                                    | 946   | 910      | 917   | 90   |  |
| 13         | 1000                      | 1100            | 1200               | 1,020  | 1,091    | 1,188 | 1,035  | 1,091    | 1,158 | 1,060  | 1,091                                  | 1,116 | 1,080    | 1,091 | 1,09 |  |
| CAN        | TIDAD DE ESCENA           | ARIOS MÁS AF    | PROXIMADOS         | 3      | 3        | 13    | 3      | 3        | 13    | 5      | 3                                      | 11    | 5        | 4     | 10   |  |

Este cuadro presenta los 13 escenarios, y para las 3 fórmulas se tienen las proyecciones calculadas con los resultados obtenidos en el 1er mes, 2do mes, 3er mes y 4to mes.


Se observa que la proyección del costo con los resultados obtenidos en el 1er y 2do mes, la fórmula 3 es la que más se aproxima en los 13 escenarios.

Con la proyección del costo con los resultados del 3er mes, la fórmula 3 cumple en 11 de los escenarios, donde la 1ra fórmula tiene mejor precisión en los escenarios 5 y 9, sin embargo los valores en verde de la fórmula 3, también son bastante aceptables.

Y estando en el 4to mes de ejecución de la obra, la fórmula 3 cumple con 10 de los escenarios en estudio, donde la fórmula 3 no es la más precisa en los escenarios 5, 9 y 12, siendo los valores en verde de la fórmula 3 también muy aceptables.

## 1.7 LA MEJOR FÓRMULA

Por lo tanto hemos demostrado que aplicando la 3da fórmula, que es la única que considera los índices de rendimiento de plazo SPI y del costo CPI, se puede predecir con mayor exactitud el costo final en la mayoría de los escenarios, siendo esta fórmula la que recomendamos emplear en todo proyecto para la estimación del costo al que se llegaría al final del proyecto.



# 1.8 PROYECCIÓN DEL COSTO FINAL EN ConstrucSoft Valor Ganado

El sistema **ConstrucSoft Valor Ganado**, obtiene en el Control de Obra, la proyección del costo al final de la obra con el respectivo cálculo de las 3 fórmulas, permitiendo identificar la problemática de la obra, por cada una de las fases de control, en base a las siguientes formulaciones:

- Se está gastando más de lo previsto.
- Existe un retraso de obra a causa de rendimientos.
- No se está logrando una producción eficiente.
- Existió un error al planificar la obra.
- Que otras causas complican el avance de la obra.



#### 1.9 RECOMENDACIONES

Recomendamos hacer de **ConstrucSoft Valor Ganado**, el mejor aliado de su empresa, y no permita que otras empresas hagan las obras por Usted.

Sugerimos visitar <u>www.construcsoft.com</u> donde encontrarán los **VIDEOS DE CONSTRUCSOFT**, en los cuales se han desarrollado temas referentes a análisis de precios unitarios, presupuestos, programación, valorización, faseo y control económico de obra.



https://todoslosvideosconstrucsoft.blogspot.com

Allí también podrán descargar el **Libro del Presupuesto Civil Valor Ganado**, como también el sistema **ConstrucSoft Gratis** que les permitirá presupuestar sus obras.



http://softwaregratispresupuestos.blogspot.com

Ing. Gilberto León Ruiz

Autor del presente artículo

Autor de los Sistemas ConstrucSoft

www.construcsoft.com construcsoft@gmail.com Lima- Perú 2022